故事比喻:小镇快递员的直线送货路线(线性函数)
在一个小镇上,有一位快递员小明,他的任务是每天根据订单数量,骑自行车送货。他发现了一条规律:
?
订单越多,他送的货就越多,骑得越远。
?
订单少,他送的货就少,骑得近。
?
如果订单是
0,他就不用出门送货。
无论订单多少,增加一单,小明的送货量都会“等比例”增加,没有突然变化,没有中途加速或减速。这条规律就像数学里的“线性函数”**!
线性函数的核心特点:变化是均匀的、成比例的
在
AI
和数学里,线性函数的公式是:
在小明的送货故事里:
?
y(快递量)
=
小明每天送的包裹数量(输出)。
?
x(订单数)
=
每天收到的订单数量(输入)。
?
a(送货效率)
=
小明每单能送多少货(比例系数)。
?
b(起始状态)
=
就算没有订单,他可能也要送一两个固定的包裹(固定值)。
线性函数的现实意义:一切都是“等比例”变化
1.
订单增加
→
送货量等比例增加(线性增长)
?
今天
10
单,小明送
10
份货。
?
明天
20
单,小明送
20
份货。
?
后天
30
单,小明送
30
份货。
变化是均匀的,不会突然暴增或暴跌,每增加一单,送货量就按照相同比例增加。
2.
另一种比喻:加油与车速
想象你开一辆汽车,油门踩得越深,车速就越快,并且车速和油门深度是成正比的:
?
踩油门
10%
→
车速
10km/h。
?
踩油门
50%
→
车速
50km/h。
?
踩油门
100%
→
车速
100km/h。
这就是线性函数的特点:输入和输出是均匀变化的,没有突变,没有加速曲线。
3.
线性函数
vs.
非线性函数(为什么
AI
需要更复杂的函数?)
但现实世界里,很多事情不是线性的。比如:
?
如果小明送的货物太多,他会变累,送货速度会下降(这时候增长不再是线性的)。
?
如果汽车速度超过一定值,空气阻力变大,车速不会无限提高(车速
vs.
油门关系变得非线性)。
AI
里,线性函数只能描述简单的关系,但现实世界很复杂,所以我们通常需要非线性函数(比如
ReLU、Sigmoid),让
AI
具备更强的学习能力!
结论:线性函数的关键作用
它表示“等比例变化”,非常适合简单的数学建模。
它容易计算,但无法处理复杂的模式(比如
AI
需要的非线性关系)。
在机器学习里,很多算法的第一步就是尝试“线性拟合”,看看数据是否符合简单的线性规律。
思考:你在现实生活中,还能找到哪些“线性关系”的例子?
故事比喻:小镇爬山比赛(非线性函数)
在一个小镇上,每年都会举办爬山比赛,从山脚一直爬到山顶。参赛选手发现了一件奇怪的事情:
?
刚开始,地势平缓,大家走得很轻
第590章 线性函数和非线形函数,用一个故事解释[1/2页]